装饰者模式

在某些情况下我们可能会“过度地使用继承来扩展对象的功能”,由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性;并且随着子类的增多(扩展功能的增多),各种子类的组合(扩展功能的组合)会导致更多子类的膨胀。
如何使“对象功能的扩展”能够根据需要来动态地实现?同时避免“扩展功能的增多”带来的子类膨胀问题?从而使得任何“功能扩展变化”所导致的影响将为最低?


Defination

动态(组合)地给一个对象增加一些额外的职责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少子类个数)。


Structure


Impletation

我们实现一个流功能,基本的有文件流、网络流、内存流,功能性的有加密流、Buffer流、加密Buffer流等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//业务操作
class Stream{
public
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
class CryptoFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
};
class CryptoNetworkStream : :public NetworkStream{
public:
virtual char Read(int number){
//额外的加密操作...
NetworkStream::Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
NetworkStream::Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
NetworkStream::Write(data);//写网络流
//额外的加密操作...
}
};
class CryptoMemoryStream : public MemoryStream{
public:
virtual char Read(int number){
//额外的加密操作...
MemoryStream::Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
MemoryStream::Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
MemoryStream::Write(data);//写内存流
//额外的加密操作...
}
};
class BufferedFileStream : public FileStream{
//...
};
class BufferedNetworkStream : public NetworkStream{
//...
};
class BufferedMemoryStream : public MemoryStream{
//...
}
class CryptoBufferedFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
//额外的缓冲操作...
}
virtual void Write(byte data){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
//额外的缓冲操作...
}
};
void Process(){
//运行时装配
CryptoFileStream *fs1 = new CryptoFileStream();
BufferedFileStream *fs2 = new BufferedFileStream();
CryptoBufferedFileStream *fs3 =new CryptoBufferedFileStream();
}

上述实现的代码,会引入一个问题,当需要添加新的功能流时,变化非常多,我们应该将每一个功能性流实现一个职责,而不是通过组合的方式实现不同流的功能,将这种静态组合变为动态组合。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
//业务操作
class Stream{
public
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
DecoratorStream: public Stream{
protected:
Stream* stream;//...
DecoratorStream(Stream * stm):stream(stm){
}
};
//扩展操作
class CryptoStream :public DecoratorStream{
public:
CryptoStream(Stream *stream) : DecoratorStream(stream) {}
virtual char Read(int number){
//额外的加密操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
};
class BufferedFileStream : public DecoratorStream{
public:
BufferedFileStream(Stream *stream) : DecoratorStream(stream) {}
//...
};
void Process(){
//编译时装配
FileStream *fileStream = new FileStream();
CryptoStream *c = new cryptoStream(fileStream);
BufferedFileStream *b = new BufferedFileStream(fileStream);
}


Summary

  • 通过采用组合而非继承的手法, Decorator模式实现了在运行时动态扩展对象功能的能力,而且可以根据需要扩展多个功能。避免了使用继承带来的“灵活性差”和“多子类衍生问题”。
  • Decorator类在接口上表现为is-a Component的继承关系,即Decorator类继承了Component类所具有的接口。但在实现上又表现为has-a Component的组合关系,即Decorator类又使用了另外一个Component类。
  • Decorator模式的目的并非解决“多子类衍生的多继承”问题,Decorator模式应用的要点在于解决“主体类在多个方向上的扩展功能”——是为“装饰”的含义。