组合模式

在软件在某些情况下,客户代码过多地依赖于对象容器复杂的内部实现结构,对象容器内部实现结构(而非抽象接口)的变化将引起客户代码的频繁变化,带来了代码的维护性、扩展性等弊端。
如何将“客户代码与复杂的对象容器结构”解耦?让对象容器自己来实现自身的复杂结构,从而使得客户代码就像处理简单对象一样来处理复杂的对象容器?


Defination

将一个复杂对象的构建与其表示相分离,使得同样的构建过程(稳定)可以创建不同的表示(变化)。


Structure


Impletation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <iostream>
#include <list>
#include <string>
#include <algorithm>
using namespace std;
class Component
{
public:
virtual void process() = 0;
virtual ~Component(){}
};
//树节点
class Composite : public Component{
string name;
list<Component*> elements;
public:
Composite(const string & s) : name(s) {}
void add(Component* element) {
elements.push_back(element);
}
void remove(Component* element){
elements.remove(element);
}
void process(){
//1. process current node
//2. process leaf nodes
for (auto &e : elements)
e->process(); //多态调用
}
};
//叶子节点
class Leaf : public Component{
string name;
public:
Leaf(string s) : name(s) {}
void process(){
//process current node
}
};
void Invoke(Component & c){
//...
c.process();
//...
}
int main()
{
Composite root("root");
Composite treeNode1("treeNode1");
Composite treeNode2("treeNode2");
Composite treeNode3("treeNode3");
Composite treeNode4("treeNode4");
Leaf leat1("left1");
Leaf leat2("left2");
root.add(&treeNode1);
treeNode1.add(&treeNode2);
treeNode2.add(&leaf1);
root.add(&treeNode3);
treeNode3.add(&treeNode4);
treeNode4.add(&leaf2);
Invoke(root);
Invoke(leaf2);
Invoke(treeNode3);
}

Summary

  • Composite模式采用树形结构来实现普遍存在的对象容器,从而将“一对多”的关系转换为“一对一”的关系,使得客户代码可以一致地(复用)处理对象和对象容器,无序关心处理的是单个的对象,还是组合的对象容器。
  • 将“客户代码与复杂的对象容器结构”解耦是Composite的核心思想,解耦之后,客户代码将与纯粹的抽象接口——而非对象容器的内部实现结构——发生依赖,从而更能“应对变化”。
  • Composite模式在具体实现中,可以让父对象中的子对象反向追溯;如果父对象有频繁的遍历需求,可以使用缓存技巧来改善效率。