命令模式

在软件构建过程中,“行为请求者”与“行为实现者”通常呈现一种“紧耦合”。但在某些场合——比如需要对行为进行“记录、撤销/重(undo/redo)、事务”等处理,这种无法抵御变化的紧耦合是不合适的。
在这种情况下,如何将“行为请求者”与“行为实现者”解耦?将一组行为抽象为对象,可以实现两者之间的松耦合。


Defination

将一个请求(行为)封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队或记录请求日志,以及支持可撤销的操作。


Structure


Impletation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <iostream>
#include <vector>
#include <string>
using namespace std;
class Command
{
public:
virtual void execute() = 0;
};
class ConcreteCommand1 : public Command
{
string arg;
public:
ConcreteCommand1(const string & a) : arg(a) {}
void execute() override
{
cout<< "#1 process..."<<arg<<endl;
}
};
class ConcreteCommand2 : public Command
{
string arg;
public:
ConcreteCommand2(const string & a) : arg(a) {}
void execute() override
{
cout<< "#2 process..."<<arg<<endl;
}
};
class MacroCommand : public Command
{
vector<Command*> commands;
public:
void addCommand(Command *c) { commands.push_back(c); }
void execute() override
{
for (auto &c : commands)
{
c->execute();
}
}
};
int main()
{
ConcreteCommand1 command1(receiver, "Arg ###");
ConcreteCommand2 command2(receiver, "Arg $$$");
MacroCommand macro;
macro.addCommand(&command1);
macro.addCommand(&command2);
macro.execute();
}

Summary

  • Command模式的目的在于将“行为请求者”与“行为实现者”解耦,在面向对象语言中,常见的实现手段是“将行为抽象为对象”。
  • 实现Command接口的具体命令对象ConcreteCommand有时候根据需要可能会保存一些额外的状态信息。通过使用Composite模式,可以将多个“命令”封装为一个“复合命令”MacroCommand。
  • Command模式与C++中的函数对象有些类似。但两者定义行为接口的规范有所区别:Command以面向对象中的“接口-实现”来定义行为接口规范,更严格,但有性能损失;C++函数对象以函数签名来定义行为接口规范,更灵活,性能更高。